Achievements and Challenges in Sedimentary Basin Dynamics: A Review

  • Roure F
  • Cloetingh S
  • Scheck-Wenderoth M
  • et al.
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Thanks to a continuous effort for unravelling geological records since the early days of coal and petroleum exploration and water management, the architecture and chrono-litho-stratigraphy of most sedimentary basins has been accurately described by means of conventional geological and geophysical studies, using both surface (outcrops) and subsurface (exploration wells and industry seismic reflection profiles) data. However, the understanding of the early development and long term evolution of sedimentary basins usually requires the integration of even more data on the deep Earth, as well as quantifications by means of kinematic-sedimentological and thermo-mechanical modelling approaches coupling both surface and deep processes. In the last twenty years, huge national and international efforts, frequently linking academy and industry, have been devoted to the recording of deep seismic profiles in many intracratonic sedimentary basins and offshore passive margins, thus providing a direct control on the structural configuration of the basement and the architecture of the crust. Seemingly, needs for documenting also the current thickness of the mantle lithosphere and the fate of subducted lithospheric slabs have led to the development of more academic and new tomographic techniques. When put together, these various techniques now provide a direct access to the bulk 3D architecture of sedimentary basins, crystalline basement and Moho, as well as underlying mantle lithosphere. Inherited structures, anisotropies in the composition of the sediments, crust and underlying mantle as well as thermicity and phase transitions are now taken into account when predicting the localization of deformation in the lithosphere during compression and extension episodes, and reconstructing the geodynamic evolution of rift basins, passive margins or even foreland fold-and-thrust belts. Source to sink studies also provide accurate estimates of sedimentary budget at basin-scale. Extensive use of low temperature chrono-thermometers and coupled kinematic, sedimentological and thermal models allow a precise control on the amount and timing of erosion and unroofing of source areas, but also the reconstruction of the sedimentary burial, strata architecture and litho-facies distribution in the sink areas. Coupling deep mantle processes with erosion and climate constitutes a new challenge for understanding the present topography, morphology and long term evolution of continents, especially in such sensitive areas as the near shore coastal plains, low lands and intra-mountain valleys which may be subject to devastating flooding and landslides. In addition to the search for hydrocarbon resources, other societal needs such as CO2 storage and underground water management will benefit from upgraded basin modelling techniques. New 2D and 3D basin modelling tools are progressively developed, coupling in different ways deep thermo-mechanic processes of the mantle (asthenosphere and lithosphere), geomechanics of the upper crust and sediments (compaction, pressure-solution and fracturing of seals and reservoirs), basin-scale fluid and sediment transfers (development of overpressures, hydrocarbon generation and migration). Further challenges related to CO2 storage will soon require the integration of fluid-rock interactions (reactive transport) in basin and reservoir models, in order to cope with the changes induced by diagenesis in the overall mechanical properties, and the continuous changes in fluid flow induced by compaction, fracturing and cementation.

Cite

CITATION STYLE

APA

Roure, F., Cloetingh, S., Scheck-Wenderoth, M., & Ziegler, P. A. (2009). Achievements and Challenges in Sedimentary Basin Dynamics: A Review. In New Frontiers in Integrated Solid Earth Sciences (pp. 145–233). Springer Netherlands. https://doi.org/10.1007/978-90-481-2737-5_5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free