The poliovirus-encoded, membrane-associated polypeptide 2C is believed to be required for initiation and elongation of RNA synthesis. We have expressed and purified recombinant, histidine-tagged 2C and examined its ability to bind to the first 100 nucleotides of the poliovirus 5' untranslated region of the positive strand and its complementary 3'-terminal negative-strand RNA sequences. Results presented here demonstrate that the 2C polypeptide specifically binds to the 3'-terminal sequences of poliovirus negative-strand RNA. Since this region is believed to form a stable cloverleaf structure, a number of mutations were constructed to examine which nucleotides and/or structures within the cloverleaf are essential for 2C binding. Binding of 2C to the 3'-terminal cloverleaf of the negative-strand RNA is greatly affected when the conserved sequence, UGUUUU, in stem a of the cloverleaf is altered. Mutational studies suggest that interaction of 2C with the 3'-terminal cloverleaf of negative-strand RNA is facilitated when the sequence UGUUUU is present in the context of a double-stranded structure. The implication of 2C binding to negative-strand RNA in viral replication is discussed.
CITATION STYLE
Banerjee, R., Echeverri, A., & Dasgupta, A. (1997). Poliovirus-encoded 2C polypeptide specifically binds to the 3’-terminal sequences of viral negative-strand RNA. Journal of Virology, 71(12), 9570–9578. https://doi.org/10.1128/jvi.71.12.9570-9578.1997
Mendeley helps you to discover research relevant for your work.