Considering economic and environmental impacts, catalytic biomass conversion to valuable compounds has attracted more and more attention. Of particular interest is furfural, a versatile biorefinery platform molecule used as a feedstock for the production of fuels and fine chemicals. In this study, the Cr-based metal-organic frameworks (MOFs) MIL-101 were modified by chlorosulfonic acid, and MIL-101 was changed into a hierarchical MOF structure with smaller particles and lower particle crystallinity by CTAB, which significantly improved the acidic sites of the MOFs. The original and modified MIL-101(Cr) catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TEM, and FT-IR. The effects of different catalysts, reaction temperature, catalyst amount, and alcohol type on the reaction were studied. Under the action of the MOFs catalyst, a new mild route for the condensation of furfural with various alkyl alcohols to the biofuel molecules (acetals) was proposed. The conversion route includes the conversion of furfural up to 91% yield of acetal could be obtained within 1 h solvent-free and in room-temperature reaction conditions. The sulfonic acid-functionalized MIL-101(Cr) is easy to recover and reuse, and can still maintain good catalytic activity after ten runs.
CITATION STYLE
Liu, S., Meng, Y., Li, H., & Yang, S. (2021). Hierarchical porous mil-101(Cr) solid acid-catalyzed production of value-added acetals from biomass-derived furfural. Polymers, 13(20). https://doi.org/10.3390/polym13203498
Mendeley helps you to discover research relevant for your work.