Symmetries and currents of the ideal and unitary Fermi gases

14Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The maximal algebra of symmetries of the free single-particle Schrödinger equation is determined and its relevance for the holographic duality in non-relativistic Fermi systems is investigated. This algebra of symmetries is an infinite dimensional extension of the Schrödinger algebra, it is isomorphic to the Weyl algebra of quantum observables, and it may be interpreted as a non-relativistic higher-spin algebra. The associated infinite collection of Noether currents bilinear in the fermions are derived from their relativistic counterparts via a light-like dimensional reduction. The minimal coupling of these currents to background sources is rewritten in a compact way by making use of Weyl quantisation. Pushing forward the similarities with the holographic correspondence between the minimal higher-spin gravity and the critical O(N) model, a putative bulk dual of the unitary and the ideal Fermi gases is briefly discussed.

Cite

CITATION STYLE

APA

Bekaert, X., Meuniera, E., & Moroz, S. (2012). Symmetries and currents of the ideal and unitary Fermi gases. Journal of High Energy Physics, 2012(2). https://doi.org/10.1007/JHEP02(2012)113

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free