Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis

13Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Acinetobacter baumannii is a cosmopolitan bacterium that is frequently reported from hospitalized patients, especially those patients who admitted in the intensive care unit. Recently, multiplex real-time PCR has been introduced for rapid detection of the resistance genes in clinical isolates of bacteria. The current study aimed to develop and evaluate multiplex real-time PCR to detect common resistance genes among clinical isolates of A. baumannii. Results: Multiplex real-time PCR based on melting curve analysis showed different Tm corresponding to the amplified fragment consisted of 83.5 °C, 93.3 °C and 89.3 °C for blaIMP, blaVIM and blaNDM, respectively. Results of multiplex real-time PCR showed that the prevalence of blaIMP, blaVIM and blaNDM among the clinical isolates of A. baumannii were 5/128(3.9%), 9/128(7.03%) and 0/128(0%), respectively. Multiplex real-time PCR was able to simultaneously identify the resistance genes, while showed 100% concordance with the results of conventional PCR. Conclusions: The current study showed that blaVIM, was the most prevalent MBL gene among the clinical isolates of A. baumannii while no amplification of blaNDM was seen. Multiplex real-time PCR can be sensitive and reliable technique for rapid detection of resistance genes in clinical isolates.

Cite

CITATION STYLE

APA

Goudarzi, H., Mirsamadi, E. S., Ghalavand, Z., Hakemi Vala, M., Mirjalali, H., & Hashemi, A. (2019). Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1510-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free