Endogenous human brain dynamics recover slowly following cognitive effort

141Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.

Abstract

Background: In functional magnetic resonance imaging, the brain's response to experimental manipulation is almost always assumed to be independent of endogenous oscillations. To test this, we addressed the possible interaction between cognitive task performance and endogenous fMRI oscillations in an experiment designed to answer two questions: 1) Does performance of a cognitively effortful task significantly change fractal scaling properties of fMRI time series compared to their values before task performance? 2) If so, can we relate the extent of task-related perturbation to the difficulty of the task? Methodology/Principal Findings: Using a novel continuous acquisition "rest-task-rest" design, we found that endogenous dynamics tended to recover their pre-task parameter values relatively slowly, over the course of several minutes, following completion of one of two versions of the n-back working memory task and that the rate of recovery was slower following completion of the more demanding (n = 2) version of the task. Conclusion/Significance: This result supports the model that endogenous low frequency oscillatory dynamics are relevant to the brain's response to exogenous stimulation. Moreover, it suggests that large-scale neurocognitive systems measured using fMRI, like the heart and other physiological systems subjected to external demands for enhanced performance, can take a considerable period of time to return to a stable baseline state. © 2009 Barnes et al.

Cite

CITATION STYLE

APA

Barnes, A., Bullmore, E. T., & Suckling, J. (2009). Endogenous human brain dynamics recover slowly following cognitive effort. PLoS ONE, 4(8). https://doi.org/10.1371/journal.pone.0006626

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free