Circ-CCDC66 upregulates REXO1 expression to aggravate cervical cancer progression via restraining miR-452-5p

15Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Cervical cancer is one most common cancer types among females over the world. While its underlying mechanisms remain unclear. Circ-CCDC66 has been revealed to participate in multiple biological functions, and contribute to various diseases’ progression. In the current study, we aimed to demonstrate the role of circ-CCDC66 in cervical cancer progression. Methods: Real-time quantitative PCR (RT-qPCR) was conducted to measure the expression of circ-CCDC66, miR-452-5p, and REXO1 mRNA. Cell fractionation assay and RNA fluorescence in situ hybridization (FISH) were performed to locate circ-CCDC66 in cells. Cell account kit 8 (CCK-8) was used to detect cell proliferation ability. Transwell assay was applied to evaluate cell migration or invasion ability. Bioinformatics analysis, biotinylated RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays were conducted to assess the association between miR-452 and circ-CCDC66 or REXO1. Western blot was applied to measure the protein expression of REXO1. The animal tumor model was used to assess the effect of circ-CCDC66 in vivo. Results: The expression of circ-CCDC66 was upregulated in cervical cancer tumor tissues in comparison with normal tissues, and correlated with later tumor stage and larger tumor size. Downregulated circ-CCDC66 inhibited cervical cancer cell proliferation, migration, and invasion. Circ-CCDC66 was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. MiR-452-5p directly targeted to REXO1. Circ-CCDC66 regulated REXO1 expression to modulate cervical cancer progression via miR-452-5p. Moreover, downregulated circ-CCDC66 was found to suppress tumor growth in vivo. Conclusion: Our results demonstrated the role of circ-CCDC66/miR-452-5p/REXO1 axis in cervical cancer progression, we might provide novel therapeutic targets for cervical cancer clinical intervention.

Cite

CITATION STYLE

APA

Zhang, Y., Li, X., Zhang, J., & Mao, L. (2021). Circ-CCDC66 upregulates REXO1 expression to aggravate cervical cancer progression via restraining miR-452-5p. Cancer Cell International, 21(1). https://doi.org/10.1186/s12935-020-01732-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free