Egypt has the potential to generate a significant amount of energy from renewable technologies, in particular solar PV, concentrated solar power (CSP), and onshore and offshore wind. The energy sector is reliant on fossil fuels, particularly natural gas, for electricity production and is at risk of locking itself into a high carbon pathway. Globally, reducing greenhouse gas (GHG) emissions associated with national energy sectors is a target outlined in the UN’s Paris Agreement. To reduce carbon dioxide (CO2) emissions associated with a higher dependence on fossil fuels, Egypt must consider upscaling renewable energy technologies (RETs) to achieve a clean energy transition (CET). This research modelled six scenarios using clicSAND for OSeMOSYS to identify the technologies and policy target improvements that are needed to upscale RETs within Egypt’s energy sector. The results showed that solar PV and onshore wind are key technologies to be upscaled to contribute towards Egypt’s CET. The optimal renewable target is the International Renewable Energy Agency’s (IRENA) target of 53% of electricity being sourced from RETs by 2030, which will cost USD 16.4 billion more up to 2035 than Egypt’s current Integrated Sustainable Energy Strategy (ISES) target of 42% by 2035; it also saves 732.0 MtCO2 over the entire modelling period to 2070. Socio-economic barriers to this transition are considered, such as recent discoveries of natural gas reserves combined with a history of energy insecurity, political instability impacting investor confidence, and a lack of international climate funding. The paper concludes with policy recommendations that would enable Egypt to progress towards achieving a CET.
CITATION STYLE
Gibson, A., Makuch, Z., Yeganyan, R., Tan, N., Cannone, C., & Howells, M. (2024). Long-Term Energy System Modelling for a Clean Energy Transition in Egypt’s Energy Sector. Energies , 17(10). https://doi.org/10.3390/en17102397
Mendeley helps you to discover research relevant for your work.