Eight data-driven models and five data pre-processing methods were summarized; the multiple linear regression (MLR), artificial neural network (ANN) and wavelet decomposition (WD) models were then used in short-term streamflow forecasting at four stations in the East River basin, China. The wavelet–artificial neural network (W-ANN) method was used to predict 1-month-ahead monthly streamflow at Longchuan station (LS). The results indicate better performance of MLR and wavelet–multiple linear regression (W-MLR) in analysing the stationary trained dataset. Four models showed similar performance in 1-day-ahead streamflow forecasting, while W-MLR and W-ANN performed better in 5-day-ahead forecasting. Three reservoirs were shown to have more influence on downstream than upstream streamflow and models had the worst performance at Boluo station. Furthermore, the W-ANN model performed well for 1-month-ahead streamflow forecasting at LS with consideration of a deterministic component.
CITATION STYLE
Zhang, Z., Zhang, Q., & Singh, V. P. (2018). Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 63(7), 1091–1111. https://doi.org/10.1080/02626667.2018.1469756
Mendeley helps you to discover research relevant for your work.