The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT) case, which requires the wind generator produce power as much as possible, and the power limited control (PLC) case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.
CITATION STYLE
Liu, H., Locment, F., & Sechilariu, M. (2018). Integrated control for small power wind generator. Energies, 11(5). https://doi.org/10.3390/en11051217
Mendeley helps you to discover research relevant for your work.