In remote sensing data processing, cover classification on decimeter-level data is a well-studied but tough subject that has been well-documented. The majority of currently existent works make use of orthographic photographs or orthophotos and digital surface models that go with them (DSMs). Urban land cover classification plays a significant role in the field of remote sensing to enhance the quality of different applications including environment protection, sustainable development, and resource management and planning. Novelty of the research done in this area is focused on extracting features from high-resolution satellite images to be used in the classification process. However, it is well known in machine learning literature that some of the extracted features are irrelevant to the classification process with a negative or no effect on its accuracy. In this work, a genetic algorithm-based feature selection approach is used to enhance the performance of urban land cover classification. Neural networks (NNs) and random forest (RF) classifiers were used to evaluate the proposed approach on a recent urban land cover dataset of nine different classes. Experimental results show that the proposed approach achieved better performance with RF classifier using only 27% of the features. The random forest tree has achieved highest accuracy 84.27%; it is concluded that the RF algorithm is an appropriate algorithm for classifying cover land.
CITATION STYLE
Alzahrani, A., & Kanan, A. (2022). Machine Learning Approaches for Developing Land Cover Mapping. Applied Bionics and Biomechanics, 2022. https://doi.org/10.1155/2022/5190193
Mendeley helps you to discover research relevant for your work.