Design and Testing of a Remote Control-Based Integrated Flow Regulation and Measurement Device

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

In order to maintain sustainable agriculture, the flow in irrigation systems needs to be managed remotely and finely to achieve efficient use of water resources. This research develops a flow measuring device that integrates measurement and control to achieve precise flow regulation under remote control. The device chooses the angular regulating valve as the actuation component to control the flow. By the experimental study of the valve body working characteristics, this paper (1) establishes the relationships among the pressure in front of the valve, the valve body opening and the pipeline flow; (2) establishes the relationship between the valve opening degree and the number of driving pulses of the stepper motor, and (3) designs the opening decision and flow measurement software. The experiment shows that the flow coefficient of the valve body is 84.61, and there is no leakage loss when closed. It also shows that the regulation curve matches the law of fast-opening features. The established relationship and the correlation coefficient between the performance parameters and the measured value are both greater than 0.99, indicating a decent performance of fitness. In a test where the pipeline pressures were 0.10, 0.20, and 0.30 MPa, the average duration of flow regulation was 62.48 s, with a maximum overshoot of 5%, and a maximum steady-state error of 6%. The experiment also showed that the higher the pressure is, the better the regulation effect is. The flow measurement error under varied pressure is below 3%. With its simple structure, fast flow regulation time, and high accuracy, this device meets the requirements of flow management in irrigation systems. It can be used in a variety of flow rate remote monitoring and control scenarios.

Cite

CITATION STYLE

APA

Liu, M., Zhu, D., Nie, X., Shi, C., Tu, H., Jing, B., … Zhao, H. (2022). Design and Testing of a Remote Control-Based Integrated Flow Regulation and Measurement Device. Sustainability (Switzerland), 14(23). https://doi.org/10.3390/su142315672

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free