The issues on global warming have become very popular and been discussed both locally and internationally. This phenomenon due to the temperature rises will increase the variability of climate and more natural disasters were expected to occur. Increasing of global temperature will affect the agricultural sector, increase some of the infectious diseases that may lead to high mortality rates in humans, high demand for electricity, water and food which eventually affecting the economy of Malaysia. Hence, this work aims to study the best fitted probability distribution that describes the annual maximum temperature recorded at seventeen meteorological stations in Malaysia. The Normal, Lognormal, Gamma, Weibull and Generalized Skew Logistic distributions are considered using the maximum likelihood estimation method to estimate the parameters. The goodness of fit test and model selection criteria such as Kolmogorov-Smirnov and AndersonDarling tests, Corrected Akaike Information Criterion and Bayesian Information Criterion are used to measure the accuracy of the predicted data using theoretical probability distributions. The results show that most of the stations favour the Generalized Skew Logistic distribution as the best fitted probability distribution. Also, some stations favour the Normal, Lognormal as well as Weibull distribution as the best fitted distribution to describe the annual maximum temperature.
CITATION STYLE
Mohd Supian, N., & Hasan, H. (2021). Selecting the probability distribution of annual maximum temperature in Malaysia. ITM Web of Conferences, 36, 01010. https://doi.org/10.1051/itmconf/20213601010
Mendeley helps you to discover research relevant for your work.