Tyrosine kinase activity, a determinant of Src homology domain interactions, has a prominent effect on cellular localization and catalysis by 5-lipoxygenase. Six separate inhibitors of tyrosine kinase each inhibited 5(S)-hydroxyeicosatetraenoic acid formation by HL-60 cells stimulated with calcium ionophore, in the presence or absence of exogenous arachidonic acid substrate, indicating that they modulated cellular 5-lipoxygenase activity. The tyrosine kinase inhibitors also blocked the translocation of 5- lipoxygenase from cytosol to membranes during cellular activation, consistent with their effects on its catalytic activity. These results fit a model which postulates that Src homology domain interactions are a molecular determinant of the processes which coordinate the subcellular localization and functions of 5-lipoxygenase. In addition, we demonstrate that activated leukocytes contain two molecularly distinct forms of 5-lipoxygenase: a phosphorylated form and a nonphosphorylated form. In activated HL-60 cells the pool of phosphorylated 5-lipoxygenase accumulates in the nuclear fraction, not with the membrane or cytosolic fractions. The amount of phosphorylated 5- lipoxygenase is a small fraction of the total. Overall, equilibrium reactions involving the nuclear localizing sequence, the proline-rich SH3 binding motif, and the phosphorylation state of 5-lipoxygenase may each influence its partnership with other cellular proteins and any novel functions derived from such partnerships.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Lepley, R. A., Muskardin, D. T., & Fitzpatrick, F. A. (1996). Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. Journal of Biological Chemistry, 271(11), 6179–6184. https://doi.org/10.1074/jbc.271.11.6179