The effect of the thickness-to-die diameter ratio on the sheet metal blanking process

6Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The blanking process has a wide range of usage in the sheet metal production industry. The effectiveness of the process rests on the balance between the surface quality of the blanks and energy conservation during the process. The effects of different process parameters on surface quality and energy efficiency have been studied by researchers, but there is a gap concerning the effect of the thickness-to-die diameter ratio on surface quality and energy efficiency. In this study, four different thickness-to-die diameter ratios (t/Dm=1/5, t/Dm=1/10, t/Dm=1/30 and t/Dm=1/50) with five different clearances (1 %, 3 %, 5 %, 10 %, and 20 % of thickness) were used to blank 2-mm-thick round workpieces made of AISI 304 stainless steel. Both experimental and FEM studies were accomplished. A special die set was manufactured and a hydraulic press was used for experimental studies. For FEM studies, Deform-2D was used. Investigations were made on the effects of different thickness-todie diameter ratios on the blanking force, cutting energy crack propagation angles, and zone distribution related to surface quality. Results gathered from FEM simulations and experimental studies were coherent with each other.

Cite

CITATION STYLE

APA

Engin, K. E., & Eyercioglu, O. (2017). The effect of the thickness-to-die diameter ratio on the sheet metal blanking process. Strojniski Vestnik/Journal of Mechanical Engineering, 63(9), 501–509. https://doi.org/10.5545/sv-jme.2016.4272

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free