Equality of the bulk and edge Hall conductances in 2D

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Von Klitzing [15] observed that a two dimensional electron gas at very low temperatures and strong magnetic field displays a quantization of the Hall conductance, that is the conductance measured in the direction transversal to the applied current. Specifically, the conductance plotted as a function of the magnetic field shows extremely flat plateaux at integer multiples of e2/h (e is a charge of electron and h is Planck's constant). Two pictures were introduced for a description of the Quantum Hall Effect: "Edge currents picture" and "Bulk currents picture". The edge current picture suggests that the Hall current flows in the narrow regions along the sample boundaries (we will denote the corresponding conductance by σE), so that the Hall voltage drops entirely in these regions. On the other hand, the description in terms of bulk currents suggests that the Hall voltage drops gradually across the sample (and let sB denote the Hall conductance associated with this regime). It was proposed by Halperin [13] that in reality one should expect an intermix of these two pictures, and that σE = σB. In [14], σE,B were linked for a Harper's model with rational flux. In more general setup, the equality of the edge and the bulk conductances was recently rigorously established [10,16,18], provided that there is a spectral gap Δ at Fermi energy of the single-particle (bulk) Hamiltonian HB. © Springer 2006.

Cite

CITATION STYLE

APA

Elgart, A. (2006). Equality of the bulk and edge Hall conductances in 2D. Lecture Notes in Physics, 690, 325–332. https://doi.org/10.1007/3-540-34273-7_23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free