The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico

32Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The 8 September 2017, Mw 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was ~ 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.

Cite

CITATION STYLE

APA

Ramírez-Herrera, M. T., Corona, N., Ruiz-Angulo, A., Melgar, D., & Zavala-Hidalgo, J. (2018). The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico. Pure and Applied Geophysics, 175(1), 25–34. https://doi.org/10.1007/s00024-017-1765-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free