Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis

Citations of this article
Mendeley users who have this article in their library.


Class I myosins are single-headed motor proteins, implicated in various motile processes including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Here we describe the cellular localization of myosin-IE and its role in the phagocytic uptake of solid particles and cells. A complete analysis of the kinetic and motor properties of Dictyostelium discoideum myosin-IE was achieved by the use of motor domain constructs with artificial lever arms. Class I myosins belonging to subclass IC like myosin-IE are thought to be tuned for tension maintenance or stress sensing. In contrast to this prediction, our results show myosin-IE to be a fast motor. Myosin-IE motor activity is regulated by myosin heavy chain phosphorylation, which increases the coupling efficiency betw n the actin and nucleotide binding sites tenfold and the motile activity more than fivefold. Changes in the level of free Mg2+ ions, which are within the physiological range, are shown to modulate the motor activity of myosin-IE by inhibiting the release of adenosine diphosphate.




Dürrwang, U., Fujita-Becker, S., Erent, M., Kull, F. J., Tsiavaliaris, G., Geeves, M. A., & Manstein, D. J. (2006). Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis. Journal of Cell Science, 119(3), 550–558. https://doi.org/10.1242/jcs.02774

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free