The growth and development of Anthurium andraeanum Andre cv . Kaumana flower before and after emergence from the subtending leaf base was studied. Eighty days before emergence, the anthurium flower was =0.3 cm long, enclosed by two tightly rolled stipules at the base of the subtending leaf petiole. During the rapid elongation stage of the leaf petiole, the flower (0.8 to 1.0 cm long) entered a period of slow growth 40 to 60 days before flower emergence. After the subtending leaf blade unfurled and had a positive photosynthetic rate, flower growth resumed. Spathe color development started =28 days before emergence when the flower was =50% of the emergence flower length (4.5 cm). At flower emergence, the spathe, excluding the lobes, was =75% red. The lobes did not develop full redness until 7 to 10 days after emergence. Peduncle growth was sigmoidal with the maximum growth rate 21 days after emergence. Spathe growth is characterized by a double sigmoid curve. The young, growing, subtending leaf blade had a negative net photosynthetic rate. Removal of this leaf blade advanced flower emergence by 18 days. The soft green leaf (25 to 30 days after leaf emergence) had a slightly positive measured net photosynthetic rate, and the removal of this leaf resulted in flower emergence 11 days earlier. A mature subtending leaf had the highest measured net photosynthetic rate, and its removal had little effect on flower emergence. The subtending leaf acted as a source of nutrients required for the developing flower. Altering the source-sink relationship by leaf removal accelerated flower emergence, probably by reducing the slow growth phase of the flower.
CITATION STYLE
Dai, J., & Paull, R. E. (2019). The Role of Leaf Development on Anthurium Flower Growth. Journal of the American Society for Horticultural Science, 115(6), 901–905. https://doi.org/10.21273/jashs.115.6.901
Mendeley helps you to discover research relevant for your work.