Diabetes is an extremely serious hazard to global health and its incidence is increasing vividly. In this paper, we develop an effective system to diagnose diabetes disease using a hybrid optimization-based Support Vector Machine (SVM).The proposed hybrid optimization technique integrates a Crow Search algorithm (CSA) and Binary Grey Wolf Optimizer (BGWO) for exploiting the full potential of SVM in the diabetes diagnosis system. The effectiveness of our proposed hybrid optimization-based SVM (hereafter called CS-BGWO-SVM) approach is carefully studied on the real-world databases such as UCIPima Indian standard dataset and the diabetes type dataset from the Data World repository. To evaluate the CS-BGWO-SVM technique, its performance is related to several state-of-the-arts approaches using SVM with respect to predictive accuracy, Intersection Over-Union (IoU), specificity, sensitivity, and the area under receiver operator characteristic curve (AUC). The outcomes of empirical analysis illustrate that CS-BGWO-SVM can be considered as a more efficient approach with outstanding classification accuracy. Furthermore, we perform the Wilcoxon statistical test to decide whether the proposed cohesive CS-BGWO-SVM approach offers a substantial enhancement in terms of performance measures or not. Consequently, we can conclude that CS-BGWO-SVM is the better diabetes diagnostic model as compared to modern diagnosis methods previously reported in the literature.
CITATION STYLE
Mallika, C., & Selvamuthukumaran, S. (2021). A Hybrid Crow Search and Grey Wolf Optimization Technique for Enhanced Medical Data Classification in Diabetes Diagnosis System. International Journal of Computational Intelligence Systems, 14(1). https://doi.org/10.1007/s44196-021-00013-0
Mendeley helps you to discover research relevant for your work.