High-content image analysis to study phenotypic heterogeneity in endothelial cell monolayers

6Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Endothelial cells (ECs) are heterogeneous across and within tissues, reflecting distinct, specialised functions. EC heterogeneity has been proposed to underpin EC plasticity independently from vessel microenvironments. However, heterogeneity driven by contact-dependent or short-range cell–cell crosstalk cannot be evaluated with single cell transcriptomic approaches, as spatial and contextual information is lost. Nonetheless, quantification of EC heterogeneity and understanding of its molecular drivers is key to developing novel therapeutics for cancer, cardiovascular diseases and for revascularisation in regenerative medicine. Here, we developed an EC profiling tool (ECPT) to examine individual cells within intact monolayers. We used ECPT to characterise different phenotypes in arterial, venous and microvascular EC populations. In line with other studies, we measured heterogeneity in terms of cell cycle, proliferation, and junction organisation. ECPT uncovered a previously under-appreciated single-cell heterogeneity in NOTCH activation. We correlated cell proliferation with different NOTCH activation states at the single-cell and population levels. The positional and relational information extracted with our novel approach is key to elucidating the molecular mechanisms underpinning EC heterogeneity.

Cite

CITATION STYLE

APA

Chesnais, F., Hue, J., Roy, E., Branco, M., Stokes, R., Pellon, A., … Veschini, L. (2022). High-content image analysis to study phenotypic heterogeneity in endothelial cell monolayers. Journal of Cell Science, 135(2). https://doi.org/10.1242/jcs.259104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free