Variations in T1ρ with locking-field strength (T 1ρ dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T1ρ at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T 1ρ dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T1ρ relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.
CITATION STYLE
Cobb, J. G., Xie, J., & Gore, J. C. (2011). Contributions of chemical exchange to T1ρ dispersion in a tissue model. Magnetic Resonance in Medicine, 66(6), 1563–1571. https://doi.org/10.1002/mrm.22947
Mendeley helps you to discover research relevant for your work.