Elevated carbon dioxide (CO2) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO2 affects brain function in larval fishes. We tested the effect of near-future CO2 concentrations (880 matm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO2 were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO2 disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO2 directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO2 ocean. © 2011 The Royal Society.
CITATION STYLE
Domenici, P., Allan, B., McCormick, M. I., & Munday, P. L. (2012). Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biology Letters, 8(1), 78–81. https://doi.org/10.1098/rsbl.2011.0591
Mendeley helps you to discover research relevant for your work.