Soil salinity is major threat to crop growth and reducing cultivated land areas and salt-resistant crops have been required to sustain agriculture in salinized areas. This original research was performed to determine the effectiveness of MgSO4 (MS) and CaSO4 (CS) for each species and assess changes in the physiology and growth of fodder crops after short and long-term salt stress. Six treatments (CON (control); NaCl (NaCl 100 mM); 1 MS (1 mM MgSO4 + 100 mM NaCl); 2 MS (2 mM MgSO4 + 100 mM NaCl); 7.5 CS (7.5 mM CaSO4 + 100 mM NaCl); and 10 CS (10 mM CaSO4 + 100 mM NaCl)) were applied to Red clover (Trifolium pratense) and Tall fescue (Festuca arundinacea) under greenhouse conditions. Cultivars were evaluated based on their dry weights, physiological parameters, forage quality, and ion concentrations. The biomass of both species decreased significantly under NaCl treatments and increased under the MS and CS treatments compared to solely salinity treatments. Salinity caused a decrease in the photosynthetic rate, but compared to CON, the MS and CS treatments yielded superior results. Moreover, the Na+/K+ ratio increased as Na+ concentration increased but crop quality (CP, NDF, ADF) did not show significant differences under salinity. Overall, we concluded that these T. pratense and F. arundinacea species demonstrated various responses to salinity, MS, and CS by different physiological and morphological parameters and it turned out to be efficient under salinity stress.
CITATION STYLE
Sharavdorj, K., Byambadorj, S. O., Jang, Y., & Cho, J. W. (2022). Application of Magnesium and Calcium Sulfate on Growth and Physiology of Forage Crops under Long-Term Salinity Stress. Plants, 11(24). https://doi.org/10.3390/plants11243576
Mendeley helps you to discover research relevant for your work.