Skip to main content

Horizontal versus vertical plate motions

  • Cuffaro M
  • Carminati E
  • Doglioni C
Citations of this article
Mendeley users who have this article in their library.
Get full text


We review both present and past motions at major plate boundaries, which have the horizontal component in average 10 to 100 times faster (10-100 mm/yr) than the vertical component (0.01-1 mm/yr) in all geodynamic settings. The steady faster horizontal velocity of the lithosphere with respect to the upward or downward velocities at plate 5 boundaries supports dominating tangential forces acting on plates. This suggests a passive role of plate boundaries with respect to far field forces determining the velocity of plates. The forces acting on the lithosphere can be subdivided in coupled and uncoupled, as a function of the shear at the lithosphere base. Higher the astheno-sphere viscosity, more significant should be the coupled forces, i.e., the mantle drag 10 and the trench suction. Lower the asthenosphere viscosity, more the effects of uncou-pled forces might result determinant, i.e., the ridge push, the slab pull and the tidal drag. Although a combination of all forces acting on the lithosphere is likely, the decoupling between lithosphere and mantle suggests that a torque acts on the lithosphere independently of the mantle drag. Slab pull and ridge push are candidates for generating 15 this torque, but, unlike these boundary forces, the advantage of the tidal drag is to be a volume force, acting simultaneously on the whole plates, and being the decoupling at the lithosphere base controlled by lateral variations in viscosity of the low-velocity layer.




Cuffaro, M., Carminati, E., & Doglioni, C. (2006). Horizontal versus vertical plate motions. EEarth Discussions, 1(2), 63–80.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free