Purification, biochemical characterization and structural modelling of alkali-stable β-1,4-xylan xylanohydrolase from Aspergillus fumigatus R1 isolated from soil

28Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Aspergillus fumigatus R1 produced xylanase under submerged fermentation which degrades the complex hemicelluloses contained in agricultural substrates. Xylanases have gained considerable attention because of their tremendous applications in industries. The purpose of our study was to purify xylanase and study its biochemical properties. We have predicted the secondary structure of purified xylanase and evaluated its active site residues and substrate binding sites based on the global and local structural similarity. Results: Various microorganisms were isolated from Puducherry soil and screened by Congo-red test. The best isolate was identified to be Aspergillus fumigatus R1. The production kinetics showed the highest xylanase production (208 IU/ml) by this organism in 96 h using 1 % rice bran as the only carbon source. The purification of extracellular xylanase was carried out by fractional ammonium sulphate precipitation (30-55 %), followed by extensive dialysis and Bio-Gel P-60 Gel-filtration chromatography. The enzyme was purified 58.10 folds with a specific activity of 38196.22 IU/mg. The biochemical characterization of the pure enzyme was carried out for its optimum pH and temperature (5.0 and 500C), pH and temperature stability, molecular mass (Mr) (24.5 kDa) and pI (6.29). The complete sequence of protein was obtained by mass spectrometry analysis. Apparent Km and Vmax values of the xylanase for birchwood xylan were 11.66 mg/ml and 87.6 μmol min-1 mg-1 respectively. Conclusion: Purified xylanase was analyzed by mass-spectrometry which revealed 2 unique peptides. Xylanase under current study showed significant production using agricultural residues and a broad range of pH stability in the alkaline region. Xylanase produced by Aspergillus fumigatus R1 could serve as the enzyme of choice in industries.

Cite

CITATION STYLE

APA

Deshmukh, R. A., Jagtap, S., Mandal, M. K., & Mandal, S. K. (2016). Purification, biochemical characterization and structural modelling of alkali-stable β-1,4-xylan xylanohydrolase from Aspergillus fumigatus R1 isolated from soil. BMC Biotechnology, 16(1). https://doi.org/10.1186/s12896-016-0242-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free