Over the past few years, room-temperature ionic liquid (RTIL) has evolved as an important solvent-cum-electrolyte because of its high thermal stability and excellent electrochemical activity. Due to these unique properties, RTILs have been used as a solvent/electrolyte/mediator in many applications. There are many RTILs, which possess good conductivity as well as an optimal electrochemical window, thus enabling their application as a transducer for electrochemical sensors. Nitroaromatics are a class of organic compounds with significant industrial applications; however, due to their excess use, detection is a major concern. The electrochemical performance of a glassy carbon electrode modified with three different RTILs, [EMIM][BF4 ], [BMIM][BF4 ] and [EMIM][TF2 N], has been evaluated for the sensing of two different nitroaromatic analytes: 2,6-dinitrotoluene (2,6 DNT) and ethylnitrobenzene (ENB). Three RTILs have been chosen such that they have either a common anion or cation amongst them. The sensory response has been measured using square wave voltammetry (SQWV). We found the transducing ability of [EMIM][BF4 ] to be superior compared to the other two RTILs. A low limit of detection (LOD) of 1 ppm has been achieved with a 95% confidence interval for both the analytes. The efficacy of varying the cationic and anionic species of RTIL to obtain a perfect combination has been thoroughly investigated in this work, which shows a novel selection process of RTILs for specific applications. Moreover, the results obtained from testing with a glassy carbon electrode (GCE) have been replicated using a miniaturized sensor platform that can be deployed easily for on-site sensing applications.
CITATION STYLE
Banga, I., Paul, A., Muthukumar, S., & Prasad, S. (2020). Characterization of room-temperature ionic liquids to study the electrochemical activity of nitro compounds. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041124
Mendeley helps you to discover research relevant for your work.