PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity

3Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Floral organs are specified by MADS-domain transcription factors that act in a combinatorial manner, as summarized in the (A)BCE model. However, this evolutionarily conserved model is in contrast to a remarkable amount of morphological diversity in flowers. One of the mechanisms suggested to contribute to this diversity is duplication of floral MADS-domain transcription factors. Although gene duplication is often followed by loss of one of the copies, sometimes both copies are retained. If both copies are retained they will initially be redundant, providing freedom for one of the paralogs to change function. Here, we examine the evolutionary fate and functional consequences of a transposition event at the base of the Brassicales that resulted in the duplication of the floral regulator PISTILLATA (PI), using Tarenaya hassleriana (Cleomaceae) as a model system. Results: The transposition of a genomic region containing a PI gene led to two paralogs which are located at different positions in the genome. The original PI copy is syntenic in position with most angiosperms, whereas the transposed copy is syntenic with the PI genes in Brassicaceae. The two PI paralogs of T. hassleriana have very similar expression patterns. However, they may have diverged in function, as only one of these PI proteins was able to act heterologously in the first whorl of A. thaliana flowers. We also observed differences in protein complex formation between the two paralogs, and the two paralogs exhibit subtle differences in DNA-binding specificity. Sequence analysis indicates that most of the protein sequence divergence between the two T. hassleriana paralogs emerged in a common ancestor of the Cleomaceae and the Brassicaceae. Conclusions: We found that the PI paralogs in T. hassleriana have similar expression patterns, but may have diverged at the level of protein function. Data suggest that most protein sequence divergence occurred rapidly, prior to the origin of the Brassicaceae and Cleomaceae. It is tempting to speculate that the interaction specificities of the Brassicaceae-specific PI proteins are different compared to the PI found in other angiosperms. This could lead to PI regulating partly different genes in the Brassicaceae, and ultimately might result in change floral in morphology.

References Powered by Scopus

MEGA6: Molecular evolutionary genetics analysis version 6.0

36650Citations
N/AReaders
Get full text

MUSCLE: Multiple sequence alignment with high accuracy and high throughput

35815Citations
N/AReaders
Get full text

MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity

4722Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The MADS-box gene PpPI is a key regulator of the double-flower trait in peach

12Citations
N/AReaders
Get full text

Evolutionary diversification of cytokinin-specific glucosyltransferases in angiosperms and enigma of missing cis-zeatin O-glucosyltransferase gene in Brassicaceae

8Citations
N/AReaders
Get full text

The overall regulatory network and contributions of ABC(D)E model genes in yellowhorn flower development

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

de Bruijn, S., Zhao, T., Muiño, J. M., Schranz, E. M., Angenent, G. C., & Kaufmann, K. (2018). PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity. BMC Plant Biology, 18(1). https://doi.org/10.1186/s12870-018-1574-0

Readers' Seniority

Tooltip

Researcher 3

43%

Professor / Associate Prof. 2

29%

PhD / Post grad / Masters / Doc 2

29%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 4

57%

Agricultural and Biological Sciences 2

29%

Business, Management and Accounting 1

14%

Save time finding and organizing research with Mendeley

Sign up for free