The aim of this study was to explore the specific role of miR-29c-3p in Alzheimer's disease (AD). Animal models of AD were established by injecting streptozotocin (STZ) into mice through the lateral ventricle, while cell models of AD were induced by 10 μM β-amyloid (Aβ). We detected miR-29c-3p and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) contents and measured AD cell proliferation and apoptosis. A low miR-29c-3p level and a high BACE1 level were detected in the brain tissue of AD animal models and AD cell models. Aβ-processed cells had markedly lower proliferation activity, higher apoptosis, increased phosphorylation of tau protein was over phosphorylated, but the overexpression of miR-29c-3p or the silencing of BACE1 significantly enhanced the cell proliferation activity and reduced cell apoptosis by regulating the contents of related proteins. Inhibition of miR-29c-3p or overexpression of BACE1 aggravated Aβ-induced side effects. We used Targetscan7.2 to predict the downstream target genes of miR-29c-3p. Then, we detected that there were target binding sites between miR-29c-3p and BACE1. The rescue experiment identified BACE1 as a functional target for miR-29c-3p. AD leads to decreased miR-29c-3p level and increased BACE1 level. MiR-29c-3p has specific binding sites with the 3′-untranslated region (3′-UTR) of BACE1 and thus negatively regulates the BACE1 level, thereby affecting the progression of AD.
CITATION STYLE
Cao, Y., Tan, X., Lu, Q., Huang, K., Tang, X., & He, Z. (2021). MiR-29c-3p May Promote the Progression of Alzheimer’s Disease through BACE1. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/2031407
Mendeley helps you to discover research relevant for your work.