Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation). The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein). Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy), a higher K m (Michaelis constant) and Vmax (maximal reaction rate), and improved thermal stability. The calculated t 1/2 (half-life) values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t 1/2 of 200.0 and 49.5 min respectively). The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS) and p-Chloro Mercuri Benzoate (p-CMB), while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively). The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications.
CITATION STYLE
Ahmed, S. A., El-Shayeb, N. M. A., Hashem, A. G. M., Saleh, S. A. A., & Abdel-Fattah, A. F. (2015). Chemical modification of aspergillus niger β-glucosidase and its catalytic properties. Brazilian Journal of Microbiology, 46(1), 23–28. https://doi.org/10.1590/S1517-838246120120462
Mendeley helps you to discover research relevant for your work.