Detection and physical mapping of the 18S-5.8S-26S rDNA and the pKFJ660 probe with microsatellite sequences derived from the rice blast fungus (Magnaporthe grisea) in conifer species

8Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sequences homologous to the pKFJ660 probe, a fragment of DNA derived from the rice blast fungus (Magnaporthe grisea) carrying TC/AG repeat microsatellite sequences and 30 bp direct repeats were identified in the genome of Picea (spruce) and Pinus (pine) species by fluorescence in situ hybridization (FISH) and slot blot analyses. Slot blot analysis using the pKFJ660 probe revealed hybridization signals with genomic DNAs from various pine and spruce species. Further analyses indicated that the copy number of the (AG)30 motif was higher than 5 × 10 4 per plant genome for all plant samples tested, but the copy number of the sequences homologous to the whole pKFJ660 probe varies considerably among the 25 plant species tested. In situ hybridization of metaphase chromosomes from Pinus resinosa, P. banksiana and P. strobus showed the presence of sequences homologous to this probe on several chromosomes in a dispersed pattern. Major signals were observed on a few chromosomes indicating that some of these sequences are clustered in specific genomic locations. The locations of these repeats were compared to those of 18S-5.8S-26S rDNA in pine species. Chromosomal distribution of 18S-5.8S-26S rDNA varied among the three pine species (P. resinosa, P. banksiana and P. strobus) studied. Ribosomal DNA (rDNA) sites were identified on 14 to 20 chromosomes in these pine species.

Cite

CITATION STYLE

APA

Nkongolo, K. K., Kim, N. S., & Michael, P. (2004). Detection and physical mapping of the 18S-5.8S-26S rDNA and the pKFJ660 probe with microsatellite sequences derived from the rice blast fungus (Magnaporthe grisea) in conifer species. Hereditas, 140(1), 70–78. https://doi.org/10.1111/j.1601-5223.2004.01691.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free