Probing an AI regression model for hand bone age determination using gradient-based saliency mapping

3Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding how a neural network makes decisions holds significant value for users. For this reason, gradient-based saliency mapping was tested on an artificial intelligence (AI) regression model for determining hand bone age from X-ray radiographs. The partial derivative (PD) of the inferred age with respect to input image intensity at each pixel served as a saliency marker to find sensitive areas contributing to the outcome. The mean of the absolute PD values was calculated for five anatomical regions of interest, and one hundred test images were evaluated with this procedure. The PD maps suggested that the AI model employed a holistic approach in determining hand bone age, with the wrist area being the most important at early ages. However, this importance decreased with increasing age. The middle section of the metacarpal bones was the least important area for bone age determination. The muscular region between the first and second metacarpal bones also exhibited high PD values but contained no bone age information, suggesting a region of vulnerability in age determination. An end-to-end gradient-based saliency map can be obtained from a black box regression AI model and provide insight into how the model makes decisions.

Cite

CITATION STYLE

APA

Wang, Z. J. (2021). Probing an AI regression model for hand bone age determination using gradient-based saliency mapping. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90157-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free