Fabrication and Characterization of Taurine Functionalized Graphene Oxide with 5-Fluorouracil as Anticancer Drug Delivery Systems

21Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, nanocarrier systems for cancer drugs, especially GO-based drug delivery systems, have become a boon for cancer patients. In this study, we choose Tau to functionalize the GO surface to improve its biocompatibility. Firstly, nano-scale GO was synthesized by the modified Hummer’s method and ultrasonic stripping method. The taurine-modified graphene oxide carrier (Tau-GO) was synthesized by chemical method to obtain Tau-GO that has a good dispersibility and stability in water, with a zeta potential of − 38.8 mV and a particle size of 242 nm. Based on the encapsulation efficiency evaluation criteria, the optimal formulation was determined to combine Tau-GO and 5-FU by non-covalent bonding. The 5-FU-Tau-GO was more stable in neutral environment than in acidic environment, and with a certain PH response and sustained release effect. In vivo, we compared oral and intravenous administrations of 5-FU and 5-FU-Tau-GO, respectively, using pharmacokinetic tests and related parameters and showed that 5-FU-Tau-GO oral or intravenous administration prolongs the action time of 5-FU in the body and improves its bioavailability. In addition, the inhibition of HepG2 cells that was measured by the MTT assay, showed that the IC50 value of 5-FU was 196 ± 8.73 μg/mL, and the IC50 value of 5-FU-Tau-GO was 65.2 ± 0.7 μg/mL, indicating that 5- FU-Tau-GO is more potent against HepG2 cells and has a stronger inhibitory effect on cancer cells. The effect on cell morphology that was measured using the AO/EB staining also showed that 5-FU-Tau-GO not only disrupted cells, but also significantly induced apoptosis compared to 5-FU. We also verified by computer aided design that Tau-GO can bind better to 5-FU than to the unmodified GO, and that the formed 5-FU-Tau-GO system is more stable, and conducive to the transfer and release of 5-FU in vivo.

Cite

CITATION STYLE

APA

Pan, H., Yu, Y., Li, L., Liu, B., & Liu, Y. (2021). Fabrication and Characterization of Taurine Functionalized Graphene Oxide with 5-Fluorouracil as Anticancer Drug Delivery Systems. Nanoscale Research Letters, 16(1). https://doi.org/10.1186/s11671-021-03541-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free