Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

66Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane.

Cite

CITATION STYLE

APA

Barker, C., & Park, S. F. (2001). Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol. Applied and Environmental Microbiology, 67(4), 1594–1600. https://doi.org/10.1128/AEM.67.4.1594-1600.2001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free