We determined how specific leaf area (SLA), specific leaf nitrogen (SLN), leaf area index (LAI), light-saturated photosynthesis (Amax) and aboveground net primary productivity (ANPP) of three commercially important hardwood species, eastern cottonwood (Populus deltoides Bartr.), American sycamore (Platanus occidentalis L.) and cherrybark oak (Quercus falcata var. pagodafolia Ell.), vary across a soil resource gradient. Five treatments were applied in a randomized block design (control, irrigation only (IRR), and irrigation plus fertilization with 56, 112 or 224 kg N ha-1 year -1 (N56, N112 and N224)) with four replications per species. When trees were 6 years old, Amax, SLA, SLN, LAI and ANPP were quantified during peak leaf production within a single growing season. In all species, Amax for sun leaves was significantly higher than for shade leaves (34, 32 and 29 μmol m2 s-1 versus 27, 23 and 23 μmol m2 s-1 for cottonwood, cherrybark oak and sycamore sun and shade leaves, respectively) and tended to plateau in the N112 treatment. The SLA was significantly lower in sun than in shade leaves and reached a plateau in IRR-treated cottonwood and sycamore, and in N56-treated oak. Values of SLN peaked in the N122 treatment for cottonwood sun leaves (1.73 g N m2) and in the N56 treatment for sycamore and oak (1.54 and 1.90 g N m2, respectively). In sun and shade leaves of all species, Amax increased with increasing SLN. Cherrybark oak LAI reached a plateau across the resource gradient in the N56 treatment, whereas cottonwood and sycamore LAI reached a plateau in the IRR treatment. All species exhibited significant curvilinear relationships between canopy Amax and ANPP. These findings indicate that nutrients and water regulate leaf-level traits such as SLA and SLN, which in turn influence LAI and canopy photosynthesis, thereby affecting ANPP at the tree and stand levels. © 2005 Heron Publishing.
CITATION STYLE
Henderson, D. E., & Jose, S. (2005). Production physiology of three fast-growing hardwood species along a soil resource gradient. In Tree Physiology (Vol. 25, pp. 1487–1494). Oxford University Press. https://doi.org/10.1093/treephys/25.12.1487
Mendeley helps you to discover research relevant for your work.