RNA-based amplicon sequencing is ineffective in measuring metabolic activity in environmental microbial communities

14Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Characterization of microbial activity is essential to the understanding of the basic biology of microbial communities, as the function of a microbiome is defined by its biochemically active (“viable”) community members. Current sequence-based technologies can rarely differentiate microbial activity, due to their inability to distinguish live and dead sourced DNA. As a result, our understanding of microbial community structures and the potential mechanisms of transmission between humans and our surrounding environments remains incomplete. As a potential solution, 16S rRNA transcript-based amplicon sequencing (16S-RNA-seq) has been proposed as a reliable methodology to characterize the active components of a microbiome, but its efficacy has not been evaluated systematically. Here, we present our work to benchmark RNA-based amplicon sequencing for activity assessment in synthetic and environmentally sourced microbial communities. Results: In synthetic mixtures of living and heat-killed Escherichia coli and Streptococcus sanguinis, 16S-RNA-seq successfully reconstructed the active compositions of the communities. However, in the realistic environmental samples, no significant compositional differences were observed in RNA (“actively transcribed — active”) vs. DNA (“whole” communities) spiked with E. coli controls, suggesting that this methodology is not appropriate for activity assessment in complex communities. The results were slightly different when validated in environmental samples of similar origins (i.e., from Boston subway systems), where samples were differentiated both by environment type as well as by library type, though compositional dissimilarities between DNA and RNA samples remained low (Bray–Curtis distance median: 0.34–0.49). To improve the interpretation of 16S-RNA-seq results, we compared our results with previous studies and found that 16S-RNA-seq suggests taxon-wise viability trends (i.e., specific taxa are universally more or less likely to be viable compared to others) in samples of similar origins. Conclusions: This study provides a comprehensive evaluation of 16S-RNA-seq for viability assessment in synthetic and complex microbial communities. The results found that while 16S-RNA-seq was able to semi-quantify microbial viability in relatively simple communities, it only suggests a taxon-dependent “relative” viability in realistic communities. [MediaObject not available: see fulltext.]

Cite

CITATION STYLE

APA

Wang, Y., Thompson, K. N., Yan, Y., Short, M. I., Zhang, Y., Franzosa, E. A., … Huttenhower, C. (2023). RNA-based amplicon sequencing is ineffective in measuring metabolic activity in environmental microbial communities. Microbiome, 11(1). https://doi.org/10.1186/s40168-022-01449-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free