F-Aware Conflict Prioritization & Improved Heuristics for Conflict-Based Search

10Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Conflict-Based Search (CBS) is a leading two-level algorithm for optimal Multi-Agent Path Finding (MAPF). The main step of CBS is to expand nodes by resolving conflicts (where two agents collide). Choosing the 'right' conflict to resolve can greatly speed up the search. CBS first resolves conflicts where the costs (g-values) of the resulting child nodes are larger than the cost of the node to be split. However, the recent addition of high-level heuristics to CBS and expanding nodes according to f = g + h reduces the relevance of this conflict prioritization method. Therefore, we introduce an expanded categorization of conflicts, which first resolves conflicts where the f-values of the child nodes are larger than the f-value of the node to be split, and present a method for identifying such conflicts. We also enhance all known heuristics for CBS by using information about the cost of resolving certain conflicts with only a small computational overhead. Finally, we experimentally demonstrate that both the expanded categorization of conflicts and the improved heuristics contribute to making CBS even more efficient.

Cite

CITATION STYLE

APA

Boyarski, E., Felner, A., Le Bodic, P., Harabor, D., Stuckey, P. J., & Koenig, S. (2021). F-Aware Conflict Prioritization & Improved Heuristics for Conflict-Based Search. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 14A, pp. 12241–12248). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i14.17453

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free