Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG−ZnP and NG−ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG−ZnP and NG−ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG−ZnP and NG−ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010 s,−1 thus indicating ultrafast electron transfer phenomena.
CITATION STYLE
Arellano, L. M., Gobeze, H. B., Jang, Y., Barrejón, M., Parejo, C., Álvarez, J. C., … Langa, F. (2022). Formation and Photoinduced Electron Transfer in Porphyrin- and Phthalocyanine-Bearing N-Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 28(22). https://doi.org/10.1002/chem.202200254
Mendeley helps you to discover research relevant for your work.