Glyphosate resistance of C3and C4weeds under rising atmospheric CO2

28Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3and C4weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3and C4plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant’s functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3species are likely to have a major developmental advantage under a CO2rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2from the atmosphere via the C4photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3pathway. Thus, based on our current knowledge of CO2fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3weeds which have a simpler photosynthetic pathway, than for C4weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of essential in managing weed control by herbicide use, and to thus ensure an increase in global food production in the event of increased atmospheric [CO2] levels.

Cite

CITATION STYLE

APA

Fernando, N., Manalil, S., Florentine, S. K., Chauhan, B. S., & Seneweera, S. (2016). Glyphosate resistance of C3and C4weeds under rising atmospheric CO2. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00910

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free