Expert systems have been widely used in medicine to diagnose different diseases. However, these rule-based systems only explain why and how their outcomes are reached. The rules leading to those outcomes are also expressed in a machine language and confronted with the familiar problems of coverage and specificity. This fact prevents procuring expert systems with fully human-understandable explanations. Furthermore, early diagnosis involves a high degree of uncertainty and vagueness which constitutes another challenge to overcome in this study. This paper aims to design and develop a fuzzy explainable expert system for coronavirus disease-2019 (COVID-19) diagnosis that could be incorporated into medical robots. The proposed medical robotic application deduces the likelihood level of contracting COVID-19 from the entered symptoms, the personal information, and the patient's activities. The proposal integrates fuzzy logic to deal with uncertainty and vagueness in diagnosis. Besides, it adopts a hybrid explainable artificial intelligence (XAI) technique to provide different explanation forms. In particular, the textual explanations are generated as rules expressed in a natural language while avoiding coverage and specificity problems. Therefore, the proposal could help overwhelmed hospitals during the epidemic propagation and avoid contamination using a solution with a high level of explicability.
CITATION STYLE
Beggar, O. E., Ramdani, M., & Kissi, M. (2023). Design and development of a fuzzy explainable expert system for a diagnostic robot of COVID-19. International Journal of Electrical and Computer Engineering, 13(6), 6940–6951. https://doi.org/10.11591/ijece.v13i6.pp6940-6951
Mendeley helps you to discover research relevant for your work.