In this paper we show a novel application of string kernels: that is to the problem of recognising famous pianists from their style of playing. The characteristics of performers playing the same piece are obtained from changes in beat-level tempo and beat-level loudness, which over the time of the piece form a performance worm. From such worms, general performance alphabets can be derived, and pianists' performances can then be represented as strings. We show that when using the string kernel on this data, both kernel partial least squares and Support Vector Machines outperform the current best results. Furthermore we suggest a new method of obtaining feature directions from the Kernel Partial Least Squares algorithm and show that this can deliver better performance than methods previously used in the literature when used in conjunction with a Support Vector Machine. © Springer-Verlag Berlin Heidelberg 2004.
CITATION STYLE
Saunders, C., Hardoon, D. R., Shawe-Taylor, J., & Widmer, G. (2004). Using string Kernels to identify famous performers from their playing style. In Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) (Vol. 3201, pp. 384–395). Springer Verlag. https://doi.org/10.1007/978-3-540-30115-8_36
Mendeley helps you to discover research relevant for your work.