Review of autonomous self-healing cementitious material

3Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Concrete is a well-known versatile material, and its application is very common in most structures. Concrete performance is high in compression but low in tensile strength, this leads to the appearance of microcracks when the structure bears the designed loading. Such microcracks when ignored, leaves the structure vulnerable to attacks such as seepage of water, chlorides, and other materials that lead to a reduction in performance, and extreme cases failure of the structure. Since cracking is inevitable in concrete, new materials with self-healing properties are introduced into the mixture to take advantage of the external materials while making the concrete stronger. This type of concrete is widely researched from 1970 until the present day and is still in 'proof of concept stages, and very few to no applications of autonomous self-healing concrete in real-world structures. This paper is an attempt to further classify the existing methodologies and find the gaps between researchers. The autonomous healing of concrete in present-day research varies in results; this means that the self-healing methodology requires standardization. Furthermore, self-healing in concrete does not mean maintenance is not required, it implies an easier maintenance method is possible due to the benefits gained through a possibly higher early cost in construction.

Cite

CITATION STYLE

APA

Susanto, S. A., Hardjito, D., & Antoni, A. (2021). Review of autonomous self-healing cementitious material. In IOP Conference Series: Earth and Environmental Science (Vol. 907). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/907/1/012006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free