Federated learning for privacy-preserving speaker recognition

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The state-of-the-art speaker recognition systems are usually trained on a single computer using speech data collected from multiple users. However, these speech samples may contain private information which users may not be willing to share. To overcome potential breaches of privacy, we investigate the use of federated learning with and without secure aggregators both for supervised and unsupervised speaker recognition systems. Federated learning enables training of a shared model without sharing private data by training the models on edge devices where the data resides. In the proposed system, each edge device trains an individual model which is subsequently sent to a secure aggregator or directly to the main server. To provide contrasting data without the need for transmitting data, we use a generative adversarial network to generate imposter data at the edge. Afterwards, the secure aggregator or the main server merges the individual models, builds a global model and transmits the global model to the edge devices. Experimental results on Voxceleb-1 dataset show that the use of federated learning both for supervised and unsupervised speaker recognition systems provides two advantages. Firstly, it retains privacy since the raw data does not leave the edge devices. Secondly, experimental results show that the aggregated model provides a better average equal error rate than the individual models when the federated model does not use a secure aggregator. Thus, our results quantify the challenges in practical application of privacy-preserving training of speaker training, in particular in terms of the trade-off between privacy and accuracy.

Cite

CITATION STYLE

APA

Woubie, A., & Bäckström, T. (2021). Federated learning for privacy-preserving speaker recognition. IEEE Access, 9, 149477–149485. https://doi.org/10.1109/ACCESS.2021.3124029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free