Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts

26Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study aims to develop and validate prediction models for the number of all heatstroke cases, and heatstrokes of hospital admission and death cases per city per 12 h, using multiple weather information and a population-based database for heatstroke patients in 16 Japanese cities (corresponding to around a 10,000,000 population size). In the testing dataset, mean absolute percentage error of generalized linear models with wet bulb globe temperature as the only predictor and the optimal models, respectively, are 43.0% and 14.8% for spikes in the number of all heatstroke cases, and 37.7% and 10.6% for spikes in the number of heatstrokes of hospital admission and death cases. The optimal models predict the spikes in the number of heatstrokes well by machine learning methods including non-linear multivariable predictors and/or under-sampling and bagging. Here, we develop prediction models whose predictive performances are high enough to be implemented in public health settings.

Cite

CITATION STYLE

APA

Ogata, S., Takegami, M., Ozaki, T., Nakashima, T., Onozuka, D., Murata, S., … Nishimura, K. (2021). Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24823-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free