Piperidines are frequently found in natural products and are of importance to the pharmaceutical industry. A generally useful asymmetric route to enantiomerically enriched 3-substituted piperidines remains elusive. Here we report a cross-coupling approach to enantioenriched 3-piperidines from pyridine- and sp2-hybridized boronic acids. The key step involves a Rh-catalyzed asymmetric reductive Heck reaction of aryl, heteroaryl, or vinyl boronic acids and phenyl pyridine-1(2H)-carboxylate to provide 3-substituted tetrahydropyridines in high yield and excellent enantioselectivity with a wide functional group tolerance. A three-step process involving i) partial reduction of pyridine, ii) Rh-catalyzed asymmetric carbometalation, and then iii) another reduction provides access to a wide variety of enantioenriched 3-piperidines, including clinically used materials such as Preclamol and Niraparib.
CITATION STYLE
Mishra, S., Karabiyikoglu, S., & Fletcher, S. P. (2023). Catalytic Enantioselective Synthesis of 3-Piperidines from Arylboronic Acids and Pyridine. Journal of the American Chemical Society, 145(26), 14221–14226. https://doi.org/10.1021/jacs.3c05044
Mendeley helps you to discover research relevant for your work.