An instrument for in situ measuring the volume scattering function of water: Design, calibration and primary experiments

12Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

The optical volume scattering function (VSF) of seawater is a fundamental property used in the calculation of radiative transfer for applications in the study of the upper-ocean heat balance, the photosynthetic productivity of the ocean, and the chemical transformation of photoreactive compounds. A new instrument to simultaneously measure the VSF in seven directions between 20° to 160°, the attenuation coefficient, and the depth of water is presented. The instrument is self-contained and can be automatically controlled by the depth under water. The self-contained data can be easily downloaded by an ultra-short-wave communication system. A calibration test was performed in the laboratory based on precise estimation of the scattering volume and optical radiometric calibration of the detectors. The measurement error of the VSF measurement instrument has been estimated in the laboratory based on the Mie theory, and the average error is less than 12%. The instrument was used to measure and analyze the variation characteristics of the VSF with angle, depth and water quality in Daya Bay for the first time. From these in situ data, we have found that the phase functions proposed by Fournier-Forand, measured by Petzold in San Diego Harbor and Sokolov in Black Sea do not fit with our measurements in Daya. These discrepancies could manly due to high proportion of suspended calcium carbonate mineral-like particles with high refractive index in Daya Bay. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Li, C., Cao, W., Yu, J., Ke, T., Lu, G., Yang, Y., & Guo, C. (2012). An instrument for in situ measuring the volume scattering function of water: Design, calibration and primary experiments. Sensors, 12(4), 4514–4533. https://doi.org/10.3390/s120404514

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free