Subgrid-scale models of isotropic turbulence need not produce energy backscatter

14Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This investigation questions the importance of inverse interscale energy fluxes, the so-called energy backscatter, for the modelling of the energy cascade in large-eddy simulations (LES) of turbulent flows. The invariance of the filtered Navier-Stokes equations to divergence-preserving transformations of the subgrid-scale (SGS) stress tensor is exploited here to explore alternative representations of the local SGS energy fluxes. Numerical optimisation procedures are applied to the SGS stress tensor - obtained by filtering isotropic turbulence flow fields - to find alternative stresses that satisfy the filtered Navier-Stokes equations, but that produce negligible backscatter. These alternative SGS stresses show that backscatter represents not a flux of energy from the subgrid to the resolved scales, but conservative spatial fluxes, and that it need not be modelled to reproduce the local energetic exchange between the resolved and the subgrid scales in LES. From the perspective of statistical mechanics, it is argued that this is a consequence of the strong statistical irreversibility of inertial-range dynamics, which precludes inverse energy cascades even in a local sense. These findings show that the energy cascade is strongly unidirectional locally, and that it can be modelled as an irreversible sink of energy, justifying the extended use of purely dissipative SGS models in LES.

Cite

CITATION STYLE

APA

Vela-Martín, A. (2022). Subgrid-scale models of isotropic turbulence need not produce energy backscatter. Journal of Fluid Mechanics, 937. https://doi.org/10.1017/jfm.2022.123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free