The effect of temperature and methanol-water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa

15Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Pressurized hot water extraction (PHWE) technique has recently gain much attention for the extraction of biologically active compounds from plant tissues for analytical purposes, due to the limited use of organic solvents, its cost-effectiveness, ease-of-use and efficiency. An increase in temperature results in higher yields, however, issues with degradation of some metabolites (e.g. tartrate esters) when PHWE is conditioned at elevated temperatures has greatly limited its use. In this study, we considered possibilities of optimizing PHWE of some specific functional metabolites from Bidens pilosa using solvent compositions of 0, 20, 40 and 60 % methanol and a temperature profile of 50, 100 and 150 °C. Results: The extracts obtained were analyzed using UPLC-qTOF-MS/MS and the results showed that both temperature and solvent composition were critical for efficient recovery of target metabolites, i.e., dicaffeoylquinic acid (diCQA) and chicoric acid (CA), which are known to possess anti-HIV properties. It was also possible to extract different isomers (possibly cis-geometrical isomers) of these molecules. Significantly differential (p ≤ 0.05) recovery patterns corresponding to the extraction conditions were observed as recovery increased with increase in methanol composition as well as temperature. The major compounds recovered in descending order were 3,5-diCQA with relative peak intensity of 204.23 ± 3.16 extracted at 50 °C and 60 % methanol; chicoric acid (141.00 ± 3.55) at 50 °C and 60 % methanol; 4,5-diCQA (108.05 ± 4.76) at 150 °C and 0 % methanol; 3,4-diCQA (53.04 ± 13.49) at 150 °C and 0 % methanol; chicoric acid isomer (40.01 ± 1.14) at 150 °C and 20 % methanol; and cis-3,5-diCQA (12.07 ± 5.54) at 100 °C and 60 % methanol. Fitting the central composite design response surface model to our data generated models that fit the data well with R2 values ranging from 0.57 to 0.87. Accordingly, it was possible to observe on the response surface plots the effects of temperature and solvent composition on the recovery patterns of these metabolites as well as to establish the optimum extraction conditions. Furthermore, the pareto charts revealed that methanol composition had a stronger effect on extraction yield than temperature. Conclusion: Using methanol as a co-solvent resulted in significantly higher (p ≤ 0.05) even at temperatures as low as 50 °C, thus undermining the limitation of thermal degradation at higher temperatures during PHWE.

Cite

CITATION STYLE

APA

Gbashi, S., Njobeh, P., Steenkamp, P., Tutu, H., & Madala, N. (2016). The effect of temperature and methanol-water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa. Chemistry Central Journal, 10(1). https://doi.org/10.1186/s13065-016-0182-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free