A humidity-resistant and room temperature carbon soot@ZIF-67 composite sensor for acetone vapour detection

14Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Zeolitic imidazolate framework-67 (ZIF-67), carbon nanoparticles (CNPs), and the CNPs@ZIF-67 composite were prepared and used to fabricate sensors for the detection of acetone vapour. The prepared materials were characterized using transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and Fourier-transform infrared spectroscopy. The sensors were tested using an LCR meter under the resistance parameter. It was found that the ZIF-67 sensor did not respond at room temperature, the CNP sensor had a non-linear response to all analytes, and the CNPs/ZIF-67 sensor had an excellent linear response to acetone vapour and was less sensitive to 3-pentanone, 4-methyl-1-hexene, toluene and cyclohexane vapours. However, it was found that ZIF-67 improves carbon soot sensor sensitivity by 155 times, wherein the sensitivity of the carbon soot sensor and carbon soot@ZIF-67 sensor on acetone vapour was found to be 0.0004 and 0.062 respectively. In addition, the sensor was found to be insensitive to humidity and the limit of detection was 484 ppb at room temperature.

Cite

CITATION STYLE

APA

Malepe, L., Ndinteh, T. D., Ndungu, P., & Mamo, M. A. (2023). A humidity-resistant and room temperature carbon soot@ZIF-67 composite sensor for acetone vapour detection. Nanoscale Advances, 5(7), 1956–1969. https://doi.org/10.1039/d3na00050h

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free