Slope stability on Bong mine is crucial for securing a balance in the gross national product of Liberia. The mine is being operated using conventional open pit methods with slope angles optimally designed to maximize ore stripping quantity. However, a working slope has displayed signs of uncertainty. The overall inclination of the slope is 56°, and the proposed maximal excavation is 315.42 m, but current depth in ore is approximately 50%. Based on the study of slope geological characteristics, the physical and mechanical parameters of rock mass and the geometrical calculation of stoping, the study is tailored on the mechanism of inspecting stress-strain behavior in response to seasonal variation of rock moisturization as a more suitable means of stope slope stability analysis in this case. This study took full account of local rainfall and other meteorological conditions. Slope stability is investigated via stereographic projections and stability assessment using the Shear Strength Reduction (SSR) method based on FLAC (Fast Lagrangian Analysis of Continua) numerical modeling technique in three dimensions to predict the stress-strain behavior of the open-pit slope and evaluate its stability state. Global stability has been analyzed under natural and saturated conditions and it is found that the slope is critically stable and needs proper attention.
CITATION STYLE
Shannon, M. G. (2021). Reliability Assessment of an Open Pit Slope on Bong Iron Ore Mine. Journal of Geoscience and Environment Protection, 09(03), 31–43. https://doi.org/10.4236/gep.2021.93003
Mendeley helps you to discover research relevant for your work.